If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+3a=180
We move all terms to the left:
a^2+3a-(180)=0
a = 1; b = 3; c = -180;
Δ = b2-4ac
Δ = 32-4·1·(-180)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-27}{2*1}=\frac{-30}{2} =-15 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+27}{2*1}=\frac{24}{2} =12 $
| t^2+8t+30=0 | | t^2+8t-30=0 | | 6.05=2.25+0.20(m–1) | | t^2-8t+30=0 | | 6x+22+x-10=180 | | -180y=-1200 | | 2x/3-1/2=13/6 | | Y=0.05x^2+2.5x | | 9h+21=7h | | t^2-8t-30=0 | | 5x^2-10x+25=23 | | -2x+25=x-10 | | -x=-5+90 | | 2(g-20)+3=-19 | | 243^k=81 | | 18=4(x-6) | | 15-2x=22+4x | | 3y+8y=33 | | (-5)x(-6)=30 | | x3+x=132 | | 15x+5=20x-2 | | 23-4x=27-6x | | 4/9x=-8/45 | | 23+5x-(7+2.5x)=0 | | k^2-11k=22 | | a/4+6=a | | 6=2(g-4 | | 5y-96=4+y | | 10x+3=1x+4 | | p+3/3=2 | | -6-12b=-14-8b | | 6e+60=0 |